A PSO and pattern search based memetic algorithm for SVMs parameters optimization

نویسندگان

  • Yukun Bao
  • Zhongyi Hu
  • Tao Xiong
چکیده

7 Addressing the issue of SVMs parameters optimization, this study proposes an efficient 8 memetic algorithm based on Particle Swarm Optimization algorithm (PSO) and Pattern Search 9 (PS). In the proposed memetic algorithm, PSO is responsible for exploration of the search space 10 and the detection of the potential regions with optimum solutions, while pattern search (PS) is 11 used to produce an effective exploitation on the potential regions obtained by PSO. Moreover, a 12 novel probabilistic selection strategy is proposed to select the appropriate individuals among the 13 current population to undergo local refinement, keeping a well balance between exploration and 14 exploitation. Experimental results confirm that the local refinement with PS and our proposed 15 selection strategy are effective, and finally demonstrate effectiveness and robustness of the 16 proposed PSO-PS based MA for SVMs parameters optimization. 17 18

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تعیین ماشین‌های بردار پشتیبان بهینه در طبقه‌بندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک

Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...

متن کامل

MMDT: Multi-Objective Memetic Rule Learning from Decision Tree

In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...

متن کامل

A new Reinforcement Learning-based Memetic Particle Swarm Optimizer

Developing an effective memetic algorithm that integrates the Particle Swarm Optimization (PSO) algorithm and a local search method is a difficult task. The challenging issues include when the local search method should be called, the frequency of calling the local search method, as well as which particle should undergo the local search operations. Motivated by this challenge, we introduce a ne...

متن کامل

Improved Particle Swarm Optimization for Solving Multiprocessor Scheduling Problem: Enhancements and Hybrid Methods

Memetic algorithms (MAs) are hybrid evolutionary algorithms (EAs) that combine global and local search by using an EA to perform exploration while the local search method performs exploitation. Combining global and local search is a strategy used by many successful global optimization approaches, and MAs have in fact been recognized as a powerful algorithmic paradigm for evolutionary computing....

متن کامل

MOUTH BROODING FISH ALGORITHM FOR COST OPTIMIZATION OF REINFORCED CONCRETE ONE-WAY RIBBED SLABS

In this paper, the optimum design of a reinforced concrete one-way ribbed slab, is presented via recently developed metaheuristic algorithm, namely, the Mouth Brooding Fish (MBF). Meta-heuristics based on evolutionary computation and swarm intelligence are outstanding examples of nature-inspired solution techniques. The MBF algorithm simulates the symbiotic interaction strategies adopted by org...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2013